Категории

Способы кодирования звука

Графическое кодирование информации

Лекция_ Кодирование звуковой информации

Звук.

Звук – это звуковая волна, у которой непрерывно меняется амплитуда и частота. При этом амплитуда определяет громкость звука, а частота — его тон. Чем больше амплитуда звуковых колебаний, тем он громче. А частота писка комара больше частоты сигнала автомобиля. Частоту измеряют в Герцах. 1Гц — это одно колебание в секунду.

Кодирование звука.

Компьютер является мощнейшим устройством для обработки различных типов информации, в том числе и звуковой. Но аналоговый звук непригоден для обработки на компьютере, его необходимо преобразовать в цифровой. Для этого используются специальные устройства — аналого-цифровые преобразователи или АЦП. В компьютере роль АЦП выполняет звуковая карта. Каким же образом АЦП преобразует сигнал из аналогового в цифровой вид? Давайте разберемся.

Пусть у нас есть источник звука с частотой 440Гц, пусть это будет гитара. Сначала звук нужно превратить в электрический сигнал. Для этого используем микрофон. На выходе микрофона мы получим электрический сигнал с частотой 440Гц. Графически он выглядит таким образом:

Следующая задача — преобразовать этот сигнал в цифровой вид, то есть в последовательность цифр. Для этого используется временная дискретизация — аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определенная величина интенсивности звука, которая зависит от амплитуды. Другими словами через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации. Частота дискретизации измеряется в Герцах. Соответственно, если мы будет измерять наш сигнал 100 раз в секунду, то частота дискретизации будет равна 100Гц.

Вот примеры некоторых используемых частот дискретизации звука:

  • 8 000 Гц — телефон, достаточно для речи;
  • 11 025 Гц;
  • 16 000 Гц;
  • 22 050 Гц — радио;
  • 32 000 Гц;
  • 44 100 Гц — используется в Audio CD;
  • 48 000 Гц — DVD, DAT;
  • 96 000 Гц — DVD-Audio (MLP 5.1);
  • 192 000 Гц — DVD-Audio (MLP 2.0);
  • 2 822 400 Гц — SACD, процесс однобитной дельта-сигма модуляции, известный как DSD — Direct Stream Digital, совместно разработан компаниями Sony и Philips;
  • 5,644,800 Гц — DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

Современные звуковые карты способны оцифровывать звук с частотой дискретизации 96Кгц и даже 192 кГц.

В итоге наш аналоговый сигнал превратится в цифровой, а график станет уже не гладким, а ступенчатым, дискретным:

Глубина кодирования звука — это количество возможных уровней сигнала. Другими словами глубина кодирования это точность измерения сигнала. Глубина кодирования измеряется в битах. Например, если количество возможных уровней сигнала равно 255, то глубина кодирования такого звука 8 бит. 16-битный звук уже позволяет работать с 65536 уровнями сигнала. Современные звуковые карты обеспечивают глубину кодирования в 16 и даже 24 бита, а это возможность кодирования 65536  и 16 777 216 различных уровней громкости соответственно.

Зная глубину кодирования, можно легко узнать количество уровней сигнала цифрового звука.  Для этого используем формулу:

N=2i,

где N — количество уровней сигнала, а i — глубина кодирования.

Например, мы знаем, что глубина кодирования звука 16 бит. Значит количество уровней цифрового сигнала равно 216=65536.

Чтобы определить глубину кодирования если известно количество возможных уровней применяют эту же формулу. Например, если известно, что сигнал имеет 256 уровней сигнала, то глубина кодирования составит 8 бит, так как 28=256.

Как понятно из данного вышеприведенного рисунка, чем чаще мы будем измерять уровень сигнала, т.е. чем выше частота дискретизации и чем точнее мы будем его измерять, тем более график цифрового сигнала будет похож на аналоговый график, соответственно, тем выше качество цифрового звука мы получим. И тем больший объем будет иметь файл.

Кроме того, мы рассматривали монофонический (одноканальный) звук, если же звук стереофонический, то размер файла увеличивается в 2 раза, так как он содержит 2 канала.

Рассмотрим пример задачи.

Какой объем будет иметь звуковой монофонический файл содержащий звук, если длительность звука 1 минута, глубина кодирования 8 бит, а частота дискретизации 22050Гц?

Зная частоту дискретизации и длительность звука легко установить количество измерений уровня сигнала за все время. Если частота дискретизации 22050Гц — значит за 1 секунду происходит 22050 измерений, а за минуту таких измерений будет 22050*60=1 323 000.

На одно измерение требуется 8 бит памяти, следовательно на 1 323 000 измерений потребуется 1 323 000*8 = 10 584 000 бит памяти. Разделив полученное число на 8 получим объем файла в байтах — 10584000/8=1 323 000 байт. Далее, разделив полученное число на 1024 получим объем файла в килобайтах — 1 291,9921875 Кбайт. А разделив полученное число еще раз на 1024 и округлив до сотых получим размер файла в мегабайтах — 1 291,9921875/1024=1,26Мбайт.

Ответ: 1,26Мбайт.

 

Источник: http://easyinformatics.ru/uroki/kodirovaniya-zvuka

Кодирование звуковой информации

Кодирование звуковой информации

Компьютер работает с цифровой информацией, которую можно представить в виде серии электрических импульсов - логических нулей и единиц. Но тот звук, который мы слышим,непрерывен. Эта звуковая волна с меняющейся амплитудой и частотой является аналоговым сигналом. Чтобы записать такой звук на диск компьютера его надо преобразовать в цифровую форму. Этим занимается аналого-цифровой преобразователь (АЦП). Для воспроизведения звука, записанного в цифровом виде, цифроаналоговый преобразователь преобразовывает его в аналоговый сигнал.

Дискретизация звука

Непрерывная звуковая волна разбивается на отдельные участки по времени, для каждого устанавливается своя величина амплитуды. Каждой ступеньке присваивается свой уровень громкости звука, который можно рассматривать как набор возможных состояний

Характеристики качества звука:

1. "Глубина" кодирования звука - количество бит на один звуковой сигнал
Современные звуковые карты обеспечивают 16-битную "глубину" кодирования звука. Количество уровней (градаций амплитуды) можно рассчитать по формуле

N = 2I = 216 = 65 536 уровней сигнала
(градаций амплитуды)

2. Частота дискретизации – это количество измерений уровней сигнала за 1 секунду

Одно измерение в 1 секунду соответствует частоте 1 Гц

1000 измерений в 1 секунду - 1 кГц

Количество измерений может лежать в диапазоне от 8000 до 48 000
(8 кГц – 48 кГц)

8 кГц соответствует частоте радиотрансляции,

48 кГц – качеству звучания аудио- CD.

Ухо человека воспринимает звук в диапазоне от ~20 Гц до 20 кГц.

Опыт показывает, что точное соответствие цифрового сигнала аналоговому достигается, если частота дискретизации будет вдвое выше максимальной звуковой частоты, то есть составит не менее 40 кГц.

На практике значения частоты дискретизации, применяемые в звуковых системах, равны 44,1 кГц или 48 кГц. Чем больше частота дискретизации, тем качественнее звук.

При двоичном кодировании непрерывного звукового  сигнала он заменяется серией его отдельных выборок — отсчетов.

Современные звуковые карты могут обеспечить кодирование 65536 различных уровней сигнала или состояний.

Таким образом, современные звуковые карты обеспечивают 16-битное кодирование звука. При каждой выборке значению амплитуды звукового сигнала присваивается 16-битный код.

Звук - это физическое природное явление, распространяющееся посредством колебаний воздуха и, следовательно, можно сказать, что мы имеем дело только с волновыми характеристиками. Задачей преобразования звука в электронный вид является повторение всех его этих самых волновых характеристик. Но электронный сигнал не является аналоговым, и может записываться посредством коротких дискретных значений. Пусть они имеют малый интервал между собой и практически неощутимы, на первый взгляд для человеческого уха, но мы должны всегда иметь в виду, что имеем дело только с эмуляцией природного явления именуемого звуком.

Такая запись называется импульсно-кодовой модуляцией и являет собой последовательную запись дискретных значений. Разрядность устройства, исчисляемая в битах, говорит о том сколькими значениями одновременно в одном записанном дискрете, берется звук. Чем больше разрядность, тем больше звук соответствует оригиналу.

Форматы звуковых файлов

РСМ
РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

WAV
Самое простое хранилище дискретных данных. Один из типов файлов семейства RIFF. Помимо обычных дискретных значений, битности, количества каналов и значений уровней громкости, в wav может быть указано еще множество параметров, о которых Вы, скорее всего, и не подозревали - это: метки позиций для синхронизации, общее количество дискретных значений, порядок воспроизведения различных частей звукового файла, а также есть место для того, чтобы Вы смогли разместить там текстовую информацию.

RIFF
Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

IFF
Эта технология хранения данных проистекает от Amiga-систем. Interchange File Format. Почти то же, что и RIFF, только имеются некоторые нюансы. Начнем с того, что система Amiga - одна из первых, в которой стали задумываться о программно-сэмплерной эмуляции музыкальных инструментов. В результате, в данном файле звук делится на две части: то, что должно звучать вначале и элемент того, что идет за началом. В результате, звучит начало один раз, за тем повторяется второй кусок столько раз, сколько Вам нужно и нота может звучать бесконечно долго.

MOD
Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

AIFили AIFF
Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

MID
Файл, хранящий в себе сообщения MIDI-системе, установленной на Вашем компьютере или в устройстве.

МР3
Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для "обычных немузыкальных" людей потери не ощутимы явно.

VQF
Хорошая альтернатива МР3, разве что менее распространенная. Есть и свои недостатки. Закодировать файл в VQF - процесс гораздо более долгий. К тому же, очень мало бесплатных программ, позволяющих работать с данным форматом файлов, что, собственно, и сказалось на его распространении.

RA
Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.

 Ввод музыки в компьютер.

Существует несколько способов ввода музыки в компьютер. Выбор будет зависеть от того, в каком виде она находится. Если источником музыки является цифровой музыкальный файл (формата wav или mp3), то он, как правило, вводится в компьютер штатными средствами — например, загружается из Интернета или копируется с компакт-диска (файл mp3 представляет собой сжатый примерно в 10 раз файл формата wav). Файлы формата wav являются «родными» для музыкальных компакт-дисков, они записываются с 16-разрядным сэмплированием с частотой 44 кГц; файл с одной песней обычно имеет размер от 30 до 60 МБ.

Если источником музыки является виниловая пластинка или музыкальный инструмент/другое устройство со стереофоническим линейным выходом, то такая музыка, как правило, вводится с помощью установленной в компьютер звуковой карты. К современной звуковой карте через гнездо линейного входа можно напрямую подключить любой музыкальный инструмент (синтезатор, гитару и т.д.) или устройство воспроизведения (проигрыватель грампластинок, магнитофон и т.п.), после чего ПК может начать запись. Здесь исключительно важную роль играет размер и форма соединительных разъемов — многие современные звуковые карты высшего класса имеют входные разъемы, позволяющие подключать оптические, раздельные кабели и кабели с миништекерами. Существует множество вариантов соединений, каждый из которых обеспечивает определенный уровень качества и соответствует определенному стандарту.

Еще одно средство ввода музыки в персональный компьютер — интерфейс MIDI. Это стандарт электронной музыки, согласно которому звуковая информация представляется в виде единиц и нулей. Обычно через интерфейс MIDI подключаются синтезаторы или отдельные клавиатуры — и тогда ПК «воспринимает» каждую сыгранную ноту как элемент цифровой информации и воспроизводит ее в виде музыки в реальном времени.

Что такое MIDI-синтезатор? Термин «синтезатор» обычно используется применительно к  электронному музыкальному инструменту, в котором звук создается и обрабатывается, меняя свою окраску и характеристики. Естественно, название этого устройства пошло от его основного предназначения – синтеза звука. Основных методов синтеза звука существует всего два: FM (Frequency modulation – частотная модуляция) и WT (Wave Table – таблично-волновой). Опишем лишь основную идею методов. В основе FM-синтеза лежит идея, что любое даже самое сложное колебание является, по сути, суммой простейших синусоидальных. Таким образом, можно наложить друг на друга сигналы от конечного числа генераторов синусоид и путем изменения частот синусоид получать звуки, похожие на настоящие. Таблично-волновой синтез основывается на другом принципе. Синтез звука при использовании такого метода достигается за счет манипуляций над заранее записанными (оцифрованными) звуками реальных музыкальных инструментов. Эти звуки (они называются сэмплами) хранятся в постоянной памяти синтезатора.

MIDI – это общепринятая спецификация, связанная с организацией цифрового интерфейса для музыкальных устройств, включающая в себя стандарт на аппаратную и программную части.

Эта спецификация предназначена для организации локальной сети электронных  инструментов (рис. 2). К MIDI-устройствам относятся различные аппаратные и музыкальные инструменты, отвечающие требованиям MIDI. Таким образом, MIDI-синтезатор – это музыкальный инструмент, предназначенный обычно для синтеза звука и музыки, а также удовлетворяющий спецификации MIDI. Давайте разберемся кратко, почему выделен отдельный класс устройств, названный MIDI.

Дело в том, что осуществление программной обработки звука часто сопряжено с неудобствами, обусловленными различными техническими особенностями этого процесса. Даже возложив операции по обработке звука на звуковую карту или любую другую аппаратуру, остается множество различных проблем. Во-первых, зачастую желательно пользоваться аппаратным синтезом звучания музыкальных инструментов (как минимум потому, что компьютер – это общий инструмент, часто необходим просто аппаратный синтезатор звуков и музыки, не более). Во-вторых, программная обработка звука часто сопровождается временными задержками, в то время как при концертной работе необходимо мгновенное получение обработанного сигнала. По этим и другим причинам и прибегают к использованию специальной аппаратуры для обработки, а не компьютеров со специальными программами. Однако при использовании аппаратуры возникает необходимость в едином стандарте, который позволил бы соединять устройства друг с другом и комбинировать их. Эти предпосылки и заставили в 1982 году несколько ведущих в области музыкального оборудования компаний утвердить первый MIDI-стандарт, который впоследствии получил продолжение и развивается по сей день. Что же, в конечном счете, представляет собой MIDI-интерфейс и устройства в него входящие с точки зрения персонального компьютера?

  • Аппаратно - это установленные на звуковой карте: синтезатор различных звуков и музыкальных инструментов, микропроцессор, контролирующий и управляющий работу MIDI-устройств, а также различные стандартизованные разъемы и шнуры для подключения дополнительных устройств.
  • Программно - это протокол MIDI, представляющий собой набор сообщений (команд), которые описывают различные функции системы MIDI и с помощью которых осуществляется связь (обмен информацией) между устройствами MIDI. Сообщения можно рассматривать как средство удаленного управления.

Следует отметить, что в отношении синтезаторов звука MIDI устанавливает строгие требования к их возможностям, примененным в них способам синтеза звука, а также к управляющим параметрам синтеза. Кроме того, для того, чтобы музыка созданная на одном синтезаторе могла бы быть легко перенесена и успешно воспроизведена на другом, были установлены несколько стандартов на соответствие инструментов (голосов) и их параметров в различных синтезаторах: стандарт General MIDI (GM),  General Synth (GS) и eXtended General (XG). Базисным стандартом является GM, остальные два являются его логическими продолжениями и расширениями.

В качестве практического примера устройства MIDI, можно рассмотреть обычную MIDI-клавиатуру. Упрощенно, MIDI-клавиатура представляет собой укороченную клавиатуру рояля, в корпусе с которой находится MIDI-интерфейс, позволяющий подключать ее к другим MIDI-устройствам, например, к MIDI-синтезатору, который установлен в звуковой карте компьютера. Используя специальное программное обеспечение (например, MIDI-секвенсор) можно включить MIDI-синтезатор в режим игры, например, на рояле, и нажимая на клавиши MIDI-клавиатуры слышать звуки рояля. Естественно, что роялем дело не ограничивается – в стандарте GM имеются 128 мелодических инструментов и 46 ударных. Кроме того, используя MIDI-секвенсор можно записывать исполняемые на MIDI-клавиатуре ноты в компьютер, для последующего редактирования и аранжировки, либо просто для элементарной распечатки нот.

Надо отметить, что поскольку MIDI-данные – это набор команд, то музыка, которая написана с помощью MIDI, также записывается с помощью команд синтезатора. Иными словами, MIDI-партитура – это последовательность команд: какую ноту играть, какой инструмент использовать, какова продолжительность и тональность ее звучания и так далее. Знакомые многим MIDI-файлы (.MID) есть нечто иное, как набор таких команд. Естественно, что поскольку имеется великое множество производителей MIDI-синтезаторов, то и звучать один и тот же файл может на разных синтезаторах по-разному (потому что в файле сами инструменты не хранятся, а есть лишь только указания синтезатору какими инструментами играть, в то время как разные синтезаторы могут звучать по-разному).

Обработка звука

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования.Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

2.  Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.

3. Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.

4.  Временные преобразования.Реализуются путем наложения, растягивания/сжатия сигналов;  позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Приведу несколько практических примеров использования указанных видов преобразований при создании реальных звуковых эффектов:

  • Echo (эхо)Реализуется с помощью временных преобразований. Фактически для получения эха необходимо на оригинальный входной сигнал наложить его задержанную во времени копию. Для того чтобы человеческое ухо воспринимало вторую копию сигнала как повторение, а не как отзвук основного сигнала, необходимо время задержки установить равным примерно 50 мс. На основной сигнал можно наложить не одну его копию, а несколько, что позволит на выходе получить эффект многократного повторения звука (многоголосного эха). Чтобы эхо казалось затухающим, необходимо на исходный сигнал накладывать не просто задержанные копии сигнала, а приглушенные по амплитуде.
  • Reverberation (повторение, отражение).Эффект заключается в придании звучанию объемности, характерной для большого зала, где каждый звук порождает соответствующий, медленно угасающий отзвук. Практически, с помощью реверберации можно «оживить», например, фонограмму, сделанную в заглушенном помещении. От эффекта «эхо» реверберация отличается тем, что на входной сигнал накладывается задержанный во времени выходной сигнал, а не задержанная копия входного.
  • Chorus (хор).В результате его применения звучание сигнала превращается как бы в звучание хора или в одновременное звучание нескольких инструментов. Схема получения такого эффекта аналогична схеме создания эффекта эха с той лишь разницей, что задержанные копии входного сигнала подвергаются слабой частотной модуляции (в среднем от 0.1 до 5 Гц) перед смешиванием с входным сигналом. Увеличение количества голосов в хоре достигается путем добавления копий сигнала с различными временами задержки.

Практическую обработку сигналов можно разделить на два типа: обработка «на лету» и пост-обработка. Обработка «на лету» подразумевает мгновенное преобразование сигнала (то есть с возможностью осуществлять вывод обработанного сигнала почти одновременно с его вводом). Простой пример – гитарные «примочки» или реверберация во время живого исполнения на сцене. Такая обработка происходит мгновенно, то есть, скажем, исполнитель поет в микрофон, а эффект-процессор преобразует его голос и слушатель слышит уже обработанный вариант голоса. Пост-обработка – это обработка уже записанного сигнала. Скорость такой обработки может быть сильно ниже скорости воспроизведения. Такая обработка преследует те же цели, то есть придание звуку определенного характера, либо изменение характеристик, однако применяется на стадии мастеринга или подготовки звука к тиражированию, когда не требуется спешка, а важнее качество и скрупулезная проработка всех нюансов звучания. Существует множество различных операций над звуком, которые вследствие недостаточной производительности сегодняшних процессоров нельзя реализовать «на лету», поэтому такие преобразования проводят лишь в пост-режиме.

Программное обеспечение

Наиболее важный класс программ – редакторы цифрового аудио. Основные возможности таких программ это, как минимум, обеспечение возможности записи (оцифровки) аудио и сохранение на диск. Развитые представители такого рода программ позволяют намного больше: запись, многоканальное сведение аудио на нескольких виртуальных дорожках, обработка специальными эффектами очистка от шумов. Они имеют развитую навигацию и инструментарий в виде спектроскопа и прочих виртуальных приборов, управление/управляемость внешними устройствами, преобразование аудио из формата в формат, генерация сигналов, запись на компакт диски и многое другое. Некоторыеизтакихпрограмм: Cool Edit Pro
рис.8

Специализированные реставраторы аудио играют также немаловажную роль в обработке звука. Такие программы позволяют восстановить утерянное качество звучания аудио материала, удалить нежелательные щелчки, шумы, треск, специфические помехи записей с аудиокассет, и провести другую корректировку аудио. Программыподобногорода: Dart, Clean (отSteinberg Inc.), Audio Cleaning Lab. (от Magix Ent.), Wave Corrector.

Основные возможности реставратора Clean 3.0 (см. рис.9 – рабочее окно программы): устранение всевозможных потрескиваний и шумов, режим автокоррекции, набор эффектов для обработки скорректированного звука, включая функцию «surround sound» с наглядным акустическим моделированием эффекта, запись CD с подготовленными данными, «интеллигентная» система подсказок, поддержка внешних VST плаг-инов и другие возможности.

Напоследок следует упомянуть о существовании огромного количества другого аудио ПО: проигрыватели аудио (наиболее выдающиеся: WinAMP, Sonique, Apollo, XMPlay, Cubic Player), подключаемые модули для проигрывателей (из «улучшателей» звучания аудио - DFX, Enhancer, iZotop Ozone), утилиты для копирования информации с аудио CD (ExactAudioCopy, CDex, AudioGrabber), перехватчики аудио потоков (Total Recorder, AudioTools), кодеры аудио (кодеры MP3: Lame encoder, Blade Encoder Go-Go и другие; кодеры VQF: TwinVQ encoder, Yamaha SoundVQ, NTT TwinVQ; кодеры AAC: FAAC, PsyTel AAC, Quartex AAC), конвертеры аудио (для перевода аудио информации из одного формата в другой), генераторы речи и множество других специфических и общих утилит. Безусловно, все перечисленное – только малая толика из того, что может пригодиться при работе со звуком.


Литература

1.http://websound.ru/  «Цифровой звук – обо всём по порядку»

2.http://edu.internet-academy.org.ge/courses/introduction_to_speciality_2/mm-audio/audio/ «Цифровой звук»

3.http://www.music4sale.ru/id_52/  «Форматы звуковых файлов»

4. http://circ.mgpu.ru/works/65/KrasnovaOA/COD/SOUND/Sound.HTM  «Кодирование звуковой информации»



[1]           DSP – Digital Signal Processor(цифровой сигнальный процессор). Устройство (или программный механизм) предназначенное для цифровой обработки сигналов.

Источник: https://nsportal.ru/ap/library/drugoe/2012/01/13/kodirovanie-zvukovoy-informatsii

Кодирования звука.

 

Любые процессы действительности могут быть преобразованы в цифровую форму. Так, кодирование звуковой информации с помощью вычислительных машин выполняется по следующей схеме:

- колебания воздуха регистрируются чувствительными приборами;

- выполняется их преобразование в электрический ток, в котором частота (амплитуда) изменяется соответственно;

- полученный ток оцифровывается, то есть происходит его дискретизация (иногда говорят, что имеет место двоичное кодирование звуковой информации).

Полученный электронный аналог исходного звукового потока тем качественнее, чем выше частота выборок при дискретизации и глубина кодирования.

Другими словами, кодирование звуковой информации – это процесс преобразования знакомого многим аналогового сигнала в цифровой, предназначенного для последующей обработки на соответствующих устройствах. Рассмотрим подробнее этапы и способы оцифровки звука.

Дискретизация по временным рамкам – это основа оцифровки. Согласно теореме Котельникова, аналоговый электрический сигнал может быть преобразован в цифровую форму путем считывания с определенным шагом непрерывного ряда значений его амплитуды. Частота таких считываний должна как минимум вдвое превышать предельное значение частоты основного сигнала. При необходимости оцифровки аналогового «исходника» с рабочей частотой 0-20 кГц выборка должна осуществляться не реже чем 40 тыс. раз в секунду (40 кГц). Дискретизация указывает на количество замеров за одну секунду исходного аналогового сигнала (сэмплирование, частота выборки). С ростом выборок возрастает не только качество, но и объем получаемого потока данных.

Также кодирование звуковой информации может выполняться другими способами. Как, например, оцифровка посредством неоднородного квантования, иногда называемого логарифмическим. При его использовании вся амплитудная шкала условно разбивается на участки с высокими и низкими значениями. Дальнейшее кодирование звуковой информации происходит путем применения большого количества уровней квантования на участках с малым значением амплитуды (и наоборот). Однако отметим, что общее число уровней остается таким же, как и в однородном методе квантования (PCM).

Совершенно другой подход реализован в альтернативном способе кодирования. Он носит название «дифференциальная импульсно-кодовая модуляция» (DPCM). При таком способе квантованию подвергается не непосредственная амплитуда сигнала, а ее относительные значения. В результате удается добиться уменьшения занимаемого данными объема, так как задействуется механизм предсказания последующих отсчетов исходного сигнала.

Кодирование и обработка звуковой информации, описываемая в данной работе, предполагает необходимость выполнения преобразования «аналог-цифра». Этот процесс осуществляется с помощью АЦП (аналого-цифрового преобразователя). С работой этого устройства ежедневно сталкивается каждый владелец компьютера, оборудованного звуковой картой (в этом случае имеет место обратный процесс – получение аналогового сигнала из цифрового потока).

Функции АЦП заключаются в следующем:

- В ограничении полосы пропускаемых частот. С помощью фильтров отсекаются составляющие сигнала, частота которых – более половины частоты дискретизации (причина описывалась ранее).

- Выборка значений амплитуды через определенные промежутки времени. В результате аналоговый сигнал представляется последовательностью единичных разрядов различной интенсивности (дискретизация).

- Замена величин полученных разрядов их ближайшими значениями из фиксированного набора (квантование).

- Преобразование каждого квантованного значения условным числом уровня квантования (каждому значению – свой порядковый номер). Это и является последним этапом оцифровки.

 


13 признаков, что у вас самый лучший муж

Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с...

Брак

Что происходит с организмом человека, который не занимается сексом?

Секс – почти такая же базовая потребность, как и приём пищи. По крайней мере, начав им заниматься, вы уже не остановитесь. Даже если вы придерживаетес...

Сексуальность

Никогда не делайте этого в церкви!

Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных...

Христианство

До ужаса красивы:15 шокирующих пластических операций, завершившихся плачевно

Пластическая хирургия среди звезд остается невероятно популярной и по сей день. Но проблема в том, что раньше результат не всегда оказывался идеальным...

Пластическая хирургия

6 признаков, что у вас было много прошлых жизней

Вы когда-нибудь чувствовали, что у вас «старая» душа? Может быть, вы именно тот человек, который многократно перерождался? Эти 6 убедительных признако...

Мистика

Зачем нужен крошечный карман на джинсах?

Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр...

Одежда

Похожие статьи

Источник: http://fb.ru/article/44195/kodirovanie-zvukovoy-informatsii
Возможно вас заинтересует